In computability theory, a system of data-manipulation rules (such as a computer’s instruction set, a programming language, or a cellular automaton) is said to be **Turing-complete** or **computationally universal** if it can be used to simulate any Turing machine. This means that this system is able to recognize or decide other data-manipulation rule sets. Turing completeness is used as a way to express the power of such a data-manipulation rule set. Virtually all programming languages today are Turing-complete. The concept is named after English mathematician and computer scientist Alan Turing.

To show that something is Turing-complete, it is enough to show that it can be used to simulate some Turing-complete system. For example, an imperative language is Turing-complete if it has conditional branching (e.g., “if” and “goto” statements, or a “branch if zero” instruction; see one-instruction set computer) and the ability to change an arbitrary amount of memory (e.g., the ability to maintain an arbitrary number of data items). Of course, no physical system can have infinite memory; but if the limitation of finite memory is ignored, most programming languages are otherwise Turing-complete.